Mean Magnetic Field Generation in Sheared Rotators

نویسنده

  • Eric G. Blackman
چکیده

A generalized mean magnetic field induction equation for differential rotators is derived, including a compressibility, and the anisotropy induced on the turbulent quantities from the mean magnetic field itself and a mean velocity shear. Derivations of the mean field equations often do not emphasize that there must be anisotropy and inhomogeneity in the turbulence for mean field growth. The anisotropy from shear is the source of a term involving the product of the mean velocity gradient and the cross-helicity correlation of the isotropic parts of the fluctuating velocity and magnetic field, 〈v · b〉. The full mean field equations are derived to linear order in mean fields, but it is also shown that the cross-helicity term survives to all orders in the velocity shear. This cross-helicity term can obviate the need for a preexisting seed mean magnetic field for mean field growth: though a fluctuating seed field is necessary for a non-vanishing cross-helicity, the term can produce linear (in time) mean field growth of the toroidal field from zero mean field. After one vertical diffusion time, the crosshelicity term becomes sub-dominant and dynamo exponential amplification/sustenance of the mean field can subsequently ensue. The cross-helicity term should produce odd symmetry in the mean magnetic field, in contrast to the usually favored even modes of the dynamo amplification in sheared discs. This may be important for the observed mean field geometries of spiral galaxies. The strength of the mean seed field provided by the crosshelicity depends linearly on the magnitude of the cross-helicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : a st ro - p h / 99 07 06 1 v 2 8 A ug 1 99 9 – 1 – Mean Magnetic Field Generation in Sheared Rotators

A generalized mean magnetic field induction equation for differential rotators is derived, including a compressibility, and the anisotropy induced on the turbulent quantities from the mean magnetic field itself and a mean velocity shear. Derivations of the mean field equations often do not emphasize that there must be anisotropy and inhomogeneity in the turbulence for mean field growth. The ani...

متن کامل

ar X iv : a st ro - p h / 99 07 06 1 v 1 5 J ul 1 99 9 – 1 – Mean Magnetic Field Generation in Sheared Rotators

A generalized mean magnetic field induction equation for differential rotators is derived, including a compressibility, and the anisotropy induced on the turbulent quantities from the mean magnetic field itself and a mean velocity shear. Derivations of the mean field equations often do not emphasize that there must be anisotropy and inhomogeneity in the turbulence for mean field growth. The ani...

متن کامل

Generation of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules

Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...

متن کامل

New mechanism of generation of large-scale magnetic field in a sheared turbulent plasma

A review of recent studies on a new mechanism of generation of large-scale magnetic field in a sheared turbulent plasma is presented. This mechanism is associated with the shear-current effect which is related to the W×J-term in the mean electromotive force. This effect causes the generation of the large-scale magnetic field even in a nonrotating and nonhelical homogeneous sheared turbulent con...

متن کامل

Nonlinear shear-current dynamo and magnetic helicity transport in sheared turbulence

The nonlinear mean-field dynamo due to a shear-current effect in a nonhelical homogeneous turbulence with a mean velocity shear is discussed. The transport of magnetic helicity as a dynamical nonlinearity is taken into account. The shear-current effect is associated with the W×J term in the mean electromotive force, where W is the mean vorticity due to the large-scale shear motions and J is the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999